输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
运用分配律。
解题步骤 1.2
重写为正弦和余弦的形式,然后约去公因式。
解题步骤 1.2.1
将 和 重新排序。
解题步骤 1.2.2
将 重写为正弦和余弦形式。
解题步骤 1.2.3
约去公因数。
解题步骤 1.3
使用乘法的交换性质重写。
解题步骤 1.4
乘以 。
解题步骤 1.4.1
对 进行 次方运算。
解题步骤 1.4.2
对 进行 次方运算。
解题步骤 1.4.3
使用幂法则 合并指数。
解题步骤 1.4.4
将 和 相加。
解题步骤 1.5
使用勾股恒等式。
解题步骤 2
使用半角公式将 重新书写为 的形式。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
将单个积分拆分为多个积分。
解题步骤 5
应用常数不变法则。
解题步骤 6
由于 对于 是常数,所以将 移到积分外。
解题步骤 7
解题步骤 7.1
设 。求 。
解题步骤 7.1.1
对 求导。
解题步骤 7.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 7.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 7.1.4
将 乘以 。
解题步骤 7.2
使用 和 重写该问题。
解题步骤 8
组合 和 。
解题步骤 9
由于 对于 是常数,所以将 移到积分外。
解题步骤 10
对 的积分为 。
解题步骤 11
化简。
解题步骤 12
使用 替换所有出现的 。
解题步骤 13
解题步骤 13.1
组合 和 。
解题步骤 13.2
运用分配律。
解题步骤 13.3
组合 和 。
解题步骤 13.4
乘以 。
解题步骤 13.4.1
将 乘以 。
解题步骤 13.4.2
将 乘以 。
解题步骤 14
重新排序项。