输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
约去 的公因数。
解题步骤 1.1.1
约去公因数。
解题步骤 1.1.2
重写表达式。
解题步骤 1.2
组合 和 。
解题步骤 2
解题步骤 2.1
计算分子和分母的极限值。
解题步骤 2.1.1
取分子和分母极限值。
解题步骤 2.1.2
当对数趋于无穷大时,值趋于 。
解题步骤 2.1.3
首项系数为正数的多项式在无穷远处的极限为无穷大。
解题步骤 2.1.4
无穷大除以无穷大无意义。
无定义
解题步骤 2.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 2.3
求分子和分母的导数。
解题步骤 2.3.1
对分子和分母进行求导。
解题步骤 2.3.2
对 的导数为 。
解题步骤 2.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.4
将分子乘以分母的倒数。
解题步骤 2.5
将 乘以 。
解题步骤 3
由于它的分子接近实数,而分母是无穷大,所以分数 趋于 。
解题步骤 4
解题步骤 4.1
使用负指数规则 将 移动到分子。
解题步骤 4.2
将 乘以 。