输入问题...
微积分学 示例
解题步骤 1
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 2
解题步骤 2.1
化简分子。
解题步骤 2.1.1
将 重写为 。
解题步骤 2.1.2
将 重写为 。
解题步骤 2.1.3
将 重写为 。
解题步骤 2.1.4
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 2.1.5
化简。
解题步骤 2.1.5.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.1.5.2
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.1.5.3
通过与 的合适因数相乘,将每一个表达式写成具有公分母 的形式。
解题步骤 2.1.5.3.1
将 乘以 。
解题步骤 2.1.5.3.2
将 乘以 。
解题步骤 2.1.5.3.3
重新排序 的因式。
解题步骤 2.1.5.4
在公分母上合并分子。
解题步骤 2.1.5.5
重新排序项。
解题步骤 2.1.5.6
将 和 相加。
解题步骤 2.1.5.7
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.1.5.8
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.1.5.9
通过与 的合适因数相乘,将每一个表达式写成具有公分母 的形式。
解题步骤 2.1.5.9.1
将 乘以 。
解题步骤 2.1.5.9.2
将 乘以 。
解题步骤 2.1.5.9.3
重新排序 的因式。
解题步骤 2.1.5.10
在公分母上合并分子。
解题步骤 2.1.5.11
以因式分解的形式重写 。
解题步骤 2.1.5.11.1
运用分配律。
解题步骤 2.1.5.11.2
将 乘以 。
解题步骤 2.1.5.11.3
从 中减去 。
解题步骤 2.1.5.11.4
将 和 相加。
解题步骤 2.1.6
将负号移到分数的前面。
解题步骤 2.1.7
合并指数。
解题步骤 2.1.7.1
提取负因数。
解题步骤 2.1.7.2
将 乘以 。
解题步骤 2.1.7.3
将 乘以 。
解题步骤 2.1.7.4
对 进行 次方运算。
解题步骤 2.1.7.5
对 进行 次方运算。
解题步骤 2.1.7.6
使用幂法则 合并指数。
解题步骤 2.1.7.7
将 和 相加。
解题步骤 2.2
将分子乘以分母的倒数。
解题步骤 2.3
约去 的公因数。
解题步骤 2.3.1
将 中前置负号移到分子中。
解题步骤 2.3.2
从 中分解出因数 。
解题步骤 2.3.3
约去公因数。
解题步骤 2.3.4
重写表达式。
解题步骤 2.4
将负号移到分数的前面。