输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
计算分子和分母的极限值。
解题步骤 1.1.1
取分子和分母极限值。
解题步骤 1.1.2
计算分子的极限值。
解题步骤 1.1.2.1
计算极限值。
解题步骤 1.1.2.1.1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 1.1.2.1.2
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 1.1.2.2
将 代入 来计算 的极限值。
解题步骤 1.1.2.3
化简答案。
解题步骤 1.1.2.3.1
将 乘以 。
解题步骤 1.1.2.3.2
从 中减去 。
解题步骤 1.1.3
计算分母的极限值。
解题步骤 1.1.3.1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 1.1.3.2
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 1.1.3.3
将极限移入对数中。
解题步骤 1.1.3.4
将 代入所有出现 的地方来计算极限值。
解题步骤 1.1.3.4.1
将 代入 来计算 的极限值。
解题步骤 1.1.3.4.2
将 代入 来计算 的极限值。
解题步骤 1.1.3.5
化简答案。
解题步骤 1.1.3.5.1
化简每一项。
解题步骤 1.1.3.5.1.1
将 乘以 。
解题步骤 1.1.3.5.1.2
的自然对数为 。
解题步骤 1.1.3.5.1.3
将 乘以 。
解题步骤 1.1.3.5.2
从 中减去 。
解题步骤 1.1.3.5.3
将 和 相加。
解题步骤 1.1.3.5.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.1.3.6
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.1.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 1.3
求分子和分母的导数。
解题步骤 1.3.1
对分子和分母进行求导。
解题步骤 1.3.2
根据加法法则, 对 的导数是 。
解题步骤 1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.4
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.3.5
将 和 相加。
解题步骤 1.3.6
根据加法法则, 对 的导数是 。
解题步骤 1.3.7
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.8
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.3.9
计算 。
解题步骤 1.3.9.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.3.9.2
对 的导数为 。
解题步骤 1.3.10
化简。
解题步骤 1.3.10.1
将 和 相加。
解题步骤 1.3.10.2
重新排序项。
解题步骤 1.4
合并项。
解题步骤 1.4.1
将 写成具有公分母的分数。
解题步骤 1.4.2
在公分母上合并分子。
解题步骤 2
因为函数从左边趋于 且从右边趋于 ,所以极限不存在。