代数 示例

判断对称性 f(x)=(4x^2)/(x^(2-4))
解题步骤 1
判断函数是否为奇、偶或两者皆非,从而找出其对称性。
1. 如果为奇函数,则关于原点对称。
2. 如果为偶函数,则关于 y 轴对称。
解题步骤 2
化简。
点击获取更多步骤...
解题步骤 2.1
使用负指数规则 移动到分子。
解题步骤 2.2
通过指数相加将 乘以
点击获取更多步骤...
解题步骤 2.2.1
移动
解题步骤 2.2.2
使用幂法则 合并指数。
解题步骤 2.2.3
中减去
解题步骤 2.2.4
乘以
解题步骤 2.2.5
相加。
解题步骤 3
点击获取更多步骤...
解题步骤 3.1
通过代入 替换 中所有出现的 来求
解题步骤 3.2
运用乘积法则。
解题步骤 3.3
进行 次方运算。
解题步骤 3.4
乘以
解题步骤 4
如果一个函数满足 ,那么它是一个偶函数。
点击获取更多步骤...
解题步骤 4.1
判断 是否成立。
解题步骤 4.2
因为 ,所以该函数是偶函数。
该函数为偶函数
该函数为偶函数
解题步骤 5
因为函数不是奇函数,所以没有关于原点对称。
不存在原点对称
解题步骤 6
因为函数不是偶函数,所以关于 y 轴对称。
Y 轴对称
解题步骤 7