输入问题...
代数 示例
解题步骤 1
解题步骤 1.1
从等式两边同时减去 。
解题步骤 1.2
化简每一项。
解题步骤 1.2.1
分解分数 成为两个分数。
解题步骤 1.2.2
将负号移到分数的前面。
解题步骤 1.3
要将 写成带有公分母的分数,请乘以 。
解题步骤 1.4
要将 写成带有公分母的分数,请乘以 。
解题步骤 1.5
通过与 的合适因数相乘,将每一个表达式写成具有公分母 的形式。
解题步骤 1.5.1
将 乘以 。
解题步骤 1.5.2
将 乘以 。
解题步骤 1.5.3
将 乘以 。
解题步骤 1.5.4
将 乘以 。
解题步骤 1.6
在公分母上合并分子。
解题步骤 1.7
化简分子。
解题步骤 1.7.1
将 乘以 。
解题步骤 1.7.2
将 乘以 。
解题步骤 1.7.3
从 中减去 。
解题步骤 1.8
将负号移到分数的前面。
解题步骤 2
解题步骤 2.1
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
解题步骤 2.2
由于 同时包括数值与变量,求最小公倍数的过程包含两步。求数值部分 的最小公倍数,然后求变量部分 的最小公倍数。
解题步骤 2.3
最小公倍数是能被所有数整除的最小正数。
1. 列出每个数的质因数。
2. 将每个因数乘以它在任一数字中出现的最大次数。
解题步骤 2.4
该数 不是一个质数,因为它只有一个正因数,即其本身。
非质数
解题步骤 2.5
因为除了 和 之外, 没有其他因数。
是一个质数
解题步骤 2.6
具有因式 和 。
解题步骤 2.7
将 乘以 。
解题步骤 2.8
的因式是 本身。
出现了 次。
解题步骤 2.9
的最小公倍数为在任一数中出现次数最多的所有质因数的乘积。
解题步骤 2.10
的最小公倍数为数字部分 乘以变量部分。
解题步骤 3
解题步骤 3.1
将 中的每一项乘以 。
解题步骤 3.2
化简左边。
解题步骤 3.2.1
约去 的公因数。
解题步骤 3.2.1.1
将 中前置负号移到分子中。
解题步骤 3.2.1.2
从 中分解出因数 。
解题步骤 3.2.1.3
约去公因数。
解题步骤 3.2.1.4
重写表达式。
解题步骤 3.2.2
将 乘以 。
解题步骤 3.3
化简右边。
解题步骤 3.3.1
化简每一项。
解题步骤 3.3.1.1
使用乘法的交换性质重写。
解题步骤 3.3.1.2
约去 的公因数。
解题步骤 3.3.1.2.1
从 中分解出因数 。
解题步骤 3.3.1.2.2
约去公因数。
解题步骤 3.3.1.2.3
重写表达式。
解题步骤 3.3.1.3
通过指数相加将 乘以 。
解题步骤 3.3.1.3.1
移动 。
解题步骤 3.3.1.3.2
将 乘以 。
解题步骤 3.3.1.4
约去 的公因数。
解题步骤 3.3.1.4.1
将 中前置负号移到分子中。
解题步骤 3.3.1.4.2
从 中分解出因数 。
解题步骤 3.3.1.4.3
约去公因数。
解题步骤 3.3.1.4.4
重写表达式。
解题步骤 4
解题步骤 4.1
将方程重写为 。
解题步骤 4.2
在等式两边都加上 。
解题步骤 4.3
分组因式分解。
解题步骤 4.3.1
对于 形式的多项式,将其中间项重写为两项之和,这两项的乘积为 并且它们的和为 。
解题步骤 4.3.1.1
从 中分解出因数 。
解题步骤 4.3.1.2
把 重写为 加
解题步骤 4.3.1.3
运用分配律。
解题步骤 4.3.2
从每组中因式分解出最大公因数。
解题步骤 4.3.2.1
将首两项和最后两项分成两组。
解题步骤 4.3.2.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 4.3.3
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 4.4
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 4.5
将 设为等于 并求解 。
解题步骤 4.5.1
将 设为等于 。
解题步骤 4.5.2
求解 的 。
解题步骤 4.5.2.1
在等式两边都加上 。
解题步骤 4.5.2.2
将 中的每一项除以 并化简。
解题步骤 4.5.2.2.1
将 中的每一项都除以 。
解题步骤 4.5.2.2.2
化简左边。
解题步骤 4.5.2.2.2.1
约去 的公因数。
解题步骤 4.5.2.2.2.1.1
约去公因数。
解题步骤 4.5.2.2.2.1.2
用 除以 。
解题步骤 4.6
将 设为等于 并求解 。
解题步骤 4.6.1
将 设为等于 。
解题步骤 4.6.2
在等式两边都加上 。
解题步骤 4.7
最终解为使 成立的所有值。
解题步骤 5
结果可以多种形式表示。
恰当形式:
小数形式: