Введите задачу...
Тригонометрия Примеры
Этап 1
Зададим аргумент в равным , чтобы узнать, где данное выражение не определено.
, для любого целого
Этап 2
Этап 2.1
Умножим .
Этап 2.1.1
Объединим и .
Этап 2.1.2
Возведем в степень .
Этап 2.1.3
Возведем в степень .
Этап 2.1.4
Применим правило степени для объединения показателей.
Этап 2.1.5
Добавим и .
Этап 2.2
Перенесем все члены без в правую часть уравнения.
Этап 2.2.1
Вычтем из обеих частей уравнения.
Этап 2.2.2
Объединим противоположные члены в .
Этап 2.2.2.1
Объединим числители над общим знаменателем.
Этап 2.2.2.2
Вычтем из .
Этап 2.2.3
Разделим на .
Этап 2.2.4
Добавим и .
Этап 2.3
Умножим обе части уравнения на .
Этап 2.4
Упростим обе части уравнения.
Этап 2.4.1
Упростим левую часть.
Этап 2.4.1.1
Сократим общий множитель .
Этап 2.4.1.1.1
Сократим общий множитель.
Этап 2.4.1.1.2
Перепишем это выражение.
Этап 2.4.2
Упростим правую часть.
Этап 2.4.2.1
Избавимся от скобок.
Этап 2.5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.6
Упростим .
Этап 2.6.1
Перепишем в виде .
Этап 2.6.1.1
Перепишем в виде .
Этап 2.6.1.2
Добавим круглые скобки.
Этап 2.6.2
Вынесем члены из-под знака корня.
Этап 2.7
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.7.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.7.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.7.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
, для любого целого числа
Этап 4