Введите задачу...
Тригонометрия Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Используем свойства произведения логарифмов: .
Этап 2.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 2.3
Вынесем множитель из .
Этап 2.3.1
Вынесем множитель из .
Этап 2.3.2
Вынесем множитель из .
Этап 2.3.3
Вынесем множитель из .
Этап 2.4
Сократим общий множитель и .
Этап 2.4.1
Вынесем множитель из .
Этап 2.4.2
Перепишем в виде .
Этап 2.4.3
Вынесем множитель из .
Этап 2.4.4
Сократим общий множитель.
Этап 2.4.5
Перепишем это выражение.
Этап 2.5
Перенесем влево от .
Этап 2.6
Вынесем знак минуса перед дробью.
Этап 3
Зададим аргумент в меньшим или равным , чтобы узнать, где данное выражение не определено.
Этап 4
Этап 4.1
Разделим каждый член на и упростим.
Этап 4.1.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 4.1.2
Упростим левую часть.
Этап 4.1.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.1.2.2
Разделим на .
Этап 4.1.3
Упростим правую часть.
Этап 4.1.3.1
Разделим на .
Этап 4.2
Умножим обе части на .
Этап 4.3
Упростим.
Этап 4.3.1
Упростим левую часть.
Этап 4.3.1.1
Сократим общий множитель .
Этап 4.3.1.1.1
Сократим общий множитель.
Этап 4.3.1.1.2
Перепишем это выражение.
Этап 4.3.2
Упростим правую часть.
Этап 4.3.2.1
Умножим на .
Этап 5
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 6