Введите задачу...
Тригонометрия Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Используем свойства произведения логарифмов: .
Этап 2.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 2.3
Упростим каждый член.
Этап 2.3.1
Сократим общий множитель и .
Этап 2.3.1.1
Вынесем множитель из .
Этап 2.3.1.2
Сократим общие множители.
Этап 2.3.1.2.1
Вынесем множитель из .
Этап 2.3.1.2.2
Сократим общий множитель.
Этап 2.3.1.2.3
Перепишем это выражение.
Этап 2.3.2
Сократим общий множитель и .
Этап 2.3.2.1
Вынесем множитель из .
Этап 2.3.2.2
Сократим общие множители.
Этап 2.3.2.2.1
Вынесем множитель из .
Этап 2.3.2.2.2
Сократим общий множитель.
Этап 2.3.2.2.3
Перепишем это выражение.
Этап 2.3.2.2.4
Разделим на .
Этап 2.3.3
Логарифм по основанию равен .
Этап 3
Зададим аргумент в меньшим или равным , чтобы узнать, где данное выражение не определено.
Этап 4
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 5