Тригонометрия Примеры

Risolvere per x x/(x^3+15x^2+56x)=0/(x(x+4)(x+7)x+(x+8))
Этап 1
Разложим на множители каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Вынесем множитель из .
Этап 1.1.5
Вынесем множитель из .
Этап 1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2
Избавимся от ненужных скобок.
Этап 1.3
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 1.4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Перенесем .
Этап 1.4.2
Умножим на .
Этап 1.5
Применим свойство дистрибутивности.
Этап 1.6
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.6.1.1
Возведем в степень .
Этап 1.6.1.2
Применим правило степени для объединения показателей.
Этап 1.6.2
Добавим и .
Этап 1.7
Перенесем влево от .
Этап 1.8
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.8.1
Применим свойство дистрибутивности.
Этап 1.8.2
Применим свойство дистрибутивности.
Этап 1.8.3
Применим свойство дистрибутивности.
Этап 1.9
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.9.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.9.1.1.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.9.1.1.1.1
Возведем в степень .
Этап 1.9.1.1.1.2
Применим правило степени для объединения показателей.
Этап 1.9.1.1.2
Добавим и .
Этап 1.9.1.2
Перенесем влево от .
Этап 1.9.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.9.1.3.1
Перенесем .
Этап 1.9.1.3.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.9.1.3.2.1
Возведем в степень .
Этап 1.9.1.3.2.2
Применим правило степени для объединения показателей.
Этап 1.9.1.3.3
Добавим и .
Этап 1.9.1.4
Умножим на .
Этап 1.9.2
Добавим и .
Этап 1.10
Разделим на .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК единицы и любого выражения есть это выражение.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Умножим на .
Этап 3.3.2.1.2
Перенесем влево от .
Этап 3.3.2.1.3
Умножим на .
Этап 3.3.2.2
Добавим и .
Этап 3.3.3
Умножим на .
Этап 4
Поскольку , решения отсутствуют.
Нет решения