Введите задачу...
Тригонометрия Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Вынесем множитель из .
Этап 1.1.5
Вынесем множитель из .
Этап 1.2
Разложим на множители.
Этап 1.2.1
Разложим на множители, используя метод группировки.
Этап 1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2
Избавимся от ненужных скобок.
Этап 1.3
Сократим выражение путем отбрасывания общих множителей.
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 1.4
Умножим на , сложив экспоненты.
Этап 1.4.1
Перенесем .
Этап 1.4.2
Умножим на .
Этап 1.5
Применим свойство дистрибутивности.
Этап 1.6
Умножим на , сложив экспоненты.
Этап 1.6.1
Умножим на .
Этап 1.6.1.1
Возведем в степень .
Этап 1.6.1.2
Применим правило степени для объединения показателей.
Этап 1.6.2
Добавим и .
Этап 1.7
Перенесем влево от .
Этап 1.8
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.8.1
Применим свойство дистрибутивности.
Этап 1.8.2
Применим свойство дистрибутивности.
Этап 1.8.3
Применим свойство дистрибутивности.
Этап 1.9
Упростим и объединим подобные члены.
Этап 1.9.1
Упростим каждый член.
Этап 1.9.1.1
Умножим на , сложив экспоненты.
Этап 1.9.1.1.1
Умножим на .
Этап 1.9.1.1.1.1
Возведем в степень .
Этап 1.9.1.1.1.2
Применим правило степени для объединения показателей.
Этап 1.9.1.1.2
Добавим и .
Этап 1.9.1.2
Перенесем влево от .
Этап 1.9.1.3
Умножим на , сложив экспоненты.
Этап 1.9.1.3.1
Перенесем .
Этап 1.9.1.3.2
Умножим на .
Этап 1.9.1.3.2.1
Возведем в степень .
Этап 1.9.1.3.2.2
Применим правило степени для объединения показателей.
Этап 1.9.1.3.3
Добавим и .
Этап 1.9.1.4
Умножим на .
Этап 1.9.2
Добавим и .
Этап 1.10
Разделим на .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК единицы и любого выражения есть это выражение.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.3.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.2
Упростим и объединим подобные члены.
Этап 3.3.2.1
Упростим каждый член.
Этап 3.3.2.1.1
Умножим на .
Этап 3.3.2.1.2
Перенесем влево от .
Этап 3.3.2.1.3
Умножим на .
Этап 3.3.2.2
Добавим и .
Этап 3.3.3
Умножим на .
Этап 4
Поскольку , решения отсутствуют.
Нет решения