Тригонометрия Примеры

Risolvere per x 3 квадратный корень из 2sin(x)+2=-1
Этап 1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Применим правило умножения к .
Этап 2.2.1.2
Возведем в степень .
Этап 2.2.1.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.2.1
Сократим общий множитель.
Этап 2.2.1.3.2.2
Перепишем это выражение.
Этап 2.2.1.4
Упростим.
Этап 2.2.1.5
Применим свойство дистрибутивности.
Этап 2.2.1.6
Умножим.
Нажмите для увеличения количества этапов...
Этап 2.2.1.6.1
Умножим на .
Этап 2.2.1.6.2
Умножим на .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Возведем в степень .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из .
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Вынесем знак минуса перед дробью.
Этап 3.3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Найдем значение .
Этап 3.5
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 3.6
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Вычтем из .
Этап 3.6.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 3.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.7.1
Период функции можно вычислить по формуле .
Этап 3.7.2
Заменим на в формуле периода.
Этап 3.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.7.4
Разделим на .
Этап 3.8
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 3.8.1
Добавим к , чтобы найти положительный угол.
Этап 3.8.2
Вычтем из .
Этап 3.8.3
Перечислим новые углы.
Этап 3.9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 4
Исключим решения, которые не делают истинным.
Нет решения