Тригонометрия Примеры

Risolvere per x in Gradi tan(x)sin(x)+4sin(x)=0
Этап 1
Упростим левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Выразим через синусы и косинусы.
Этап 1.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Объединим и .
Этап 1.1.2.2
Возведем в степень .
Этап 1.1.2.3
Возведем в степень .
Этап 1.1.2.4
Применим правило степени для объединения показателей.
Этап 1.1.2.5
Добавим и .
Этап 1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Разделим дроби.
Этап 1.2.3
Переведем в .
Этап 1.2.4
Разделим на .
Этап 2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Этап 2.2
Вынесем множитель из .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 4.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Точное значение : .
Этап 4.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 4.2.4
Вычтем из .
Этап 4.2.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Период функции можно вычислить по формуле .
Этап 4.2.5.2
Заменим на в формуле периода.
Этап 4.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.5.4
Разделим на .
Этап 4.2.6
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Найдем значение .
Этап 5.2.4
Функция тангенса отрицательна во втором и четвертом квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 5.2.5
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 5.2.5.1
Добавим к .
Этап 5.2.5.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 5.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 5.2.6.1
Период функции можно вычислить по формуле .
Этап 5.2.6.2
Заменим на в формуле периода.
Этап 5.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.6.4
Разделим на .
Этап 5.2.7
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 5.2.7.1
Добавим к , чтобы найти положительный угол.
Этап 5.2.7.2
Вычтем из .
Этап 5.2.7.3
Перечислим новые углы.
Этап 5.2.8
Период функции равен . Поэтому значения повторяются через каждые град. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 7
Объединим ответы.
Нажмите для увеличения количества этапов...
Этап 7.1
Объединим и в .
, для любого целого
Этап 7.2
Объединим и в .
, для любого целого
, для любого целого