Основы мат. анализа Примеры

Решить графическим способом 3y^2-5x^2=8 , 3y^2-x^2=24
,
Step 1
Добавим к обеим частям уравнения.
Step 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4
Упростим .
Нажмите для увеличения количества этапов...
Объединим числители над общим знаменателем.
Перепишем в виде .
Умножим на .
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Перепишем в виде .
Нажмите для увеличения количества этапов...
С помощью запишем в виде .
Применим правило степени и перемножим показатели, .
Объединим и .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Найдем экспоненту.
Объединим, используя правило умножения для радикалов.
Изменим порядок множителей в .
Step 5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Step 6
Добавим к обеим частям уравнения.
Step 7
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Разделим на .
Step 8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 9
Упростим .
Нажмите для увеличения количества этапов...
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим и .
Объединим числители над общим знаменателем.
Умножим на .
Перепишем в виде .
Умножим на .
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Перепишем в виде .
Нажмите для увеличения количества этапов...
С помощью запишем в виде .
Применим правило степени и перемножим показатели, .
Объединим и .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Найдем экспоненту.
Объединим, используя правило умножения для радикалов.
Изменим порядок множителей в .
Step 10
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Step 11
Построим график для нахождения точки пересечения уравнений. Точка пересечения является решением системы уравнений.
Step 12