Введите задачу...
Основы мат. анализа Примеры
Этап 1
Воспользуемся бином Ньютона.
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Единица в любой степени равна единице.
Этап 2.1.2
Единица в любой степени равна единице.
Этап 2.1.3
Умножим на .
Этап 2.1.4
Умножим на .
Этап 2.1.5
Умножим на .
Этап 2.1.6
Применим правило умножения к .
Этап 2.1.7
Возведем в степень .
Этап 2.1.8
Умножим на .
Этап 2.1.9
Перепишем в виде .
Этап 2.1.10
Умножим на .
Этап 2.1.11
Применим правило умножения к .
Этап 2.1.12
Возведем в степень .
Этап 2.1.13
Вынесем за скобки.
Этап 2.1.14
Перепишем в виде .
Этап 2.1.15
Перепишем в виде .
Этап 2.1.16
Умножим на .
Этап 2.1.17
Умножим на .
Этап 2.2
Упростим путем добавления членов.
Этап 2.2.1
Вычтем из .
Этап 2.2.2
Добавим и .
Этап 3
Это тригонометрическая форма комплексного числа, где — модуль, а — угол радиус-вектора на комплексной плоскости.
Этап 4
Модуль комплексного числа ― это расстояние от начала координат на комплексной плоскости.
, где
Этап 5
Подставим фактические значения и .
Этап 6
Этап 6.1
Возведем в степень .
Этап 6.2
Возведем в степень .
Этап 6.3
Добавим и .
Этап 6.4
Перепишем в виде .
Этап 6.4.1
Вынесем множитель из .
Этап 6.4.2
Перепишем в виде .
Этап 6.5
Вынесем члены из-под знака корня.
Этап 7
Угол точки на комплексной плоскости равен обратному тангенсу мнимой части, поделенной на вещественную часть.
Этап 8
Поскольку обратный тангенс дает угол в третьем квадранте, значение угла равно .
Этап 9
Подставим значения и .