Введите задачу...
Основы мат. анализа Примеры
,
Этап 1
Этап 1.1
Заменим обозначения функций в фактическими функциями.
Этап 1.2
Упростим.
Этап 1.2.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.2
Упростим знаменатель.
Этап 1.2.2.1
Перепишем в виде .
Этап 1.2.2.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2.3
Умножим на .
Этап 1.2.4
Объединим и упростим знаменатель.
Этап 1.2.4.1
Умножим на .
Этап 1.2.4.2
Возведем в степень .
Этап 1.2.4.3
Возведем в степень .
Этап 1.2.4.4
Применим правило степени для объединения показателей.
Этап 1.2.4.5
Добавим и .
Этап 1.2.4.6
Перепишем в виде .
Этап 1.2.4.6.1
С помощью запишем в виде .
Этап 1.2.4.6.2
Применим правило степени и перемножим показатели, .
Этап 1.2.4.6.3
Объединим и .
Этап 1.2.4.6.4
Сократим общий множитель .
Этап 1.2.4.6.4.1
Сократим общий множитель.
Этап 1.2.4.6.4.2
Перепишем это выражение.
Этап 1.2.4.6.5
Упростим.
Этап 1.2.5
Умножим на .
Этап 2
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 3
Добавим к обеим частям неравенства.
Этап 4
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 5
Этап 5.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.2
Приравняем к , затем решим относительно .
Этап 5.2.1
Приравняем к .
Этап 5.2.2
Вычтем из обеих частей уравнения.
Этап 5.3
Приравняем к , затем решим относительно .
Этап 5.3.1
Приравняем к .
Этап 5.3.2
Добавим к обеим частям уравнения.
Этап 5.4
Приравняем к , затем решим относительно .
Этап 5.4.1
Приравняем к .
Этап 5.4.2
Добавим к обеим частям уравнения.
Этап 5.5
Окончательным решением являются все значения, при которых верно.
Этап 6
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 7