Основы мат. анализа Примеры

Этап 1
Перепишем уравнение в виде .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Избавимся от скобок.
Этап 2.3
НОК единицы и любого выражения есть это выражение.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Изменим порядок и .
Этап 4.3.1.2
Вынесем множитель из .
Этап 4.3.1.3
Вынесем множитель из .
Этап 4.3.1.4
Перепишем в виде .
Этап 4.3.1.5
Вынесем множитель из .
Этап 4.3.1.6
Вынесем множитель из .
Этап 4.3.2
Перепишем в виде .
Этап 4.3.3
Пусть . Подставим вместо для всех.
Этап 4.3.4
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Перепишем в виде .
Этап 4.3.4.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 4.3.4.3
Перепишем многочлен.
Этап 4.3.4.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 4.3.5
Заменим все вхождения на .
Этап 4.3.6
Перепишем в виде .
Этап 4.3.7
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 4.3.8
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 4.3.8.1
Применим правило умножения к .
Этап 4.3.8.2
Избавимся от ненужных скобок.
Этап 4.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.2.1
Приравняем к .
Этап 4.5.2.2
Вычтем из обеих частей уравнения.
Этап 4.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.2.1
Приравняем к .
Этап 4.6.2.2
Добавим к обеим частям уравнения.
Этап 4.7
Окончательным решением являются все значения, при которых верно.