Основы мат. анализа Примеры

Доказать, что является корнем на заданном интервале f(x)=4x^3+2x^2-6x+7 , [-3,-1]
,
Этап 1
Теорема о промежуточном значении утверждает, что если является непрерывной функцией с действительными значениями на интервале , а число лежит между и , то существует такое число на интервале , что .
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Вычислим .
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Возведем в степень .
Этап 3.1.2
Умножим на .
Этап 3.1.3
Возведем в степень .
Этап 3.1.4
Умножим на .
Этап 3.1.5
Умножим на .
Этап 3.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Добавим и .
Этап 3.2.2
Добавим и .
Этап 3.2.3
Добавим и .
Этап 4
Вычислим .
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Умножим на .
Этап 4.1.3
Возведем в степень .
Этап 4.1.4
Умножим на .
Этап 4.1.5
Умножим на .
Этап 4.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим и .
Этап 4.2.2
Добавим и .
Этап 4.2.3
Добавим и .
Этап 5
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Этап 6
Теорема о промежуточном значении утверждает, что на интервале существует корень , поскольку является непрерывной функцией на .
Корни на интервале расположены в .
Этап 7