Основы мат. анализа Примеры

Оценить предел предел (n!)/(n^n), если n стремится к 8
Этап 1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2
Используем свойства логарифмов, чтобы упростить предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Развернем , вынося из логарифма.
Этап 3
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1
Внесем предел под знак экспоненты.
Этап 3.2
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 3.3
Внесем предел под знак логарифма.
Этап 4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем предел , подставив значение для .
Этап 4.2
Развернем до .
Этап 4.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Умножим на .
Этап 4.3.3
Умножим на .
Этап 4.3.4
Умножим на .
Этап 4.3.5
Умножим на .
Этап 4.3.6
Умножим на .
Этап 4.3.7
Умножим на .
Этап 4.4
Найдем предел , подставив значение для .
Этап 4.5
Найдем предел , подставив значение для .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Упростим путем переноса под логарифм.
Этап 5.1.2
Экспонента и логарифм являются обратными функциями.
Этап 5.1.3
Возведем в степень .
Этап 5.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общий множитель.
Этап 5.2.2.3
Перепишем это выражение.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: