Основы мат. анализа Примеры

Найти область определения ( квадратный корень из 4x-16)/( корень четвертой степени из (x-4)^3)
Этап 1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим к обеим частям неравенства.
Этап 2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим каждый член на .
Этап 2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Сократим общий множитель.
Этап 2.2.2.1.2
Разделим на .
Этап 2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Разделим на .
Этап 3
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Этап 4.2
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Вынесем члены из-под знака корня.
Этап 4.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Перепишем в виде .
Этап 4.2.2.1.2
Вынесем члены из-под знака корня.
Этап 4.3
Добавим к обеим частям неравенства.
Этап 5
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Чтобы избавиться от знака корня в левой части уравнения, возведем обе части в степень .
Этап 6.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.2.1
С помощью запишем в виде .
Этап 6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.2.1
Сократим общий множитель.
Этап 6.2.2.1.2.2
Перепишем это выражение.
Этап 6.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Возведение в любую положительную степень дает .
Этап 6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Приравняем к .
Этап 6.3.2
Добавим к обеим частям уравнения.
Этап 7
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 8