Введите задачу...
ΠΡΠ½ΠΎΠ²Ρ ΠΌΠ°Ρ. Π°Π½Π°Π»ΠΈΠ·Π° ΠΡΠΈΠΌΠ΅ΡΡ
,
ΠΡΠ°ΠΏ 1
ΠΡΠ°ΠΏ 1.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 1.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 1.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 1.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 1.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΠ°ΠΏ 2.2.1.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΊ .
ΠΡΠ°ΠΏ 2.2.1.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 2.2.1.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ .
ΠΡΠ°ΠΏ 2.2.1.3.1
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.2.1.3.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3
ΠΡΠ°ΠΏ 3.1
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΠΠ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ ΡΠ»Π΅Π½ΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.1.1
ΠΠ°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΠΠ Π΄Π»Ρ ΡΠΏΠΈΡΠΊΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉΒ β ΡΡΠΎ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅, ΡΡΠΎ Π½Π°ΠΉΡΠΈ ΠΠΠ Π΄Π»Ρ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
ΠΡΠ°ΠΏ 3.1.2
ΠΠΠ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΅ΡΡΡ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.2
ΠΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π² ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° , ΡΡΠΎΠ±Ρ ΡΠ±ΡΠ°ΡΡ Π΄ΡΠΎΠ±ΠΈ.
ΠΡΠ°ΠΏ 3.2.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 3.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.2.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΠ°ΠΏ 3.2.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 3.2.2.1.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 3.2.2.1.1.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.2.2.1.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° , ΡΠ»ΠΎΠΆΠΈΠ² ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ°ΠΏ 3.2.2.1.2.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ°ΠΏ 3.2.2.1.2.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3.3
Π Π΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.1
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.2
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΡΠΎ ΡΠΏΡΠΎΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.3
Π Π°Π·Π»ΠΎΠΆΠΈΠΌ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΌΠ΅ΡΠΎΠ΄ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²ΠΊΠΈ.
ΠΡΠ°ΠΏ 3.3.3.1
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡ . ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΠ°ΡΡ ΡΠ΅Π»ΡΡ
ΡΠΈΡΠ΅Π», ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ°Π²Π½ΠΎ , Π° ΡΡΠΌΠΌΠ°Β β . Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» ΡΠ°Π²Π½ΠΎ , Π° ΡΡΠΌΠΌΠ°Β β .
ΠΡΠ°ΠΏ 3.3.3.2
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π΄Π°Π½Π½ΡΠ΅ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΡΠ°ΠΏ 3.3.4
ΠΡΠ»ΠΈ Π»ΡΠ±ΠΎΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π² Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½ , Π²ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ .
ΠΡΠ°ΠΏ 3.3.5
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΊ , Π·Π°ΡΠ΅ΠΌ ΡΠ΅ΡΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.3.5.1
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΊ .
ΠΡΠ°ΠΏ 3.3.5.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.6
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΊ , Π·Π°ΡΠ΅ΠΌ ΡΠ΅ΡΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.3.6.1
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΊ .
ΠΡΠ°ΠΏ 3.3.6.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.7
ΠΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΡΡΡΡ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
Π²Π΅ΡΠ½ΠΎ.
ΠΡΠ°ΠΏ 3.3.8
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ Π² ΡΠ΅ΡΠ΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.9
Π Π΅ΡΠΈΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.3.10
Π Π΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.3.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ΠΡΠ°ΠΏ 3.3.10.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 3.3.10.2.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 3.3.10.2.2
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΈΠ·-ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΠ½Ρ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ, ΡΡΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π° ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ.
ΠΡΠ°ΠΏ 3.3.10.3
ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.10.3.1
Π‘Π½Π°ΡΠ°Π»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.10.3.2
ΠΠ°ΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ , Π½Π°ΠΉΠ΄Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.10.3.3
ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.11
Π Π΅ΡΠΈΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.3.12
Π Π΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.3.12.1
ΠΠ·Π±Π°Π²ΠΈΠΌΡΡ ΠΎΡ ΡΠΊΠΎΠ±ΠΎΠΊ.
ΠΡΠ°ΠΏ 3.3.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ΠΡΠ°ΠΏ 3.3.12.3
ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.12.3.1
Π‘Π½Π°ΡΠ°Π»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.12.3.2
ΠΠ°ΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ , Π½Π°ΠΉΠ΄Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.12.3.3
ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 3.3.13
Π Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ .
ΠΡΠ°ΠΏ 4
ΠΡΠ°ΠΏ 4.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 4.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 4.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 5
ΠΡΠ°ΠΏ 5.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 5.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 5.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6
ΠΡΠ°ΠΏ 6.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 6.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 6.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 7
ΠΡΠ°ΠΏ 7.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 7.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 7.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 8
ΠΡΠ°ΠΏ 8.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 8.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 8.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 8.2.1.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 8.2.1.2
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 8.2.1.2.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 8.2.1.2.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 8.2.1.2.3
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 8.2.1.2.4
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ°ΠΏ 8.2.1.2.5
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 8.2.1.2.6
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 8.2.1.2.6.1
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 8.2.1.2.6.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 8.2.1.2.6.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 8.2.1.2.6.4
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 8.2.1.2.6.4.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 8.2.1.2.6.4.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 8.2.1.2.6.5
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ°ΠΏ 8.2.1.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 8.2.1.3.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 8.2.1.3.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 9
ΠΡΠ°ΠΏ 9.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 9.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 9.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 10
ΠΡΠ°ΠΏ 10.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 10.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 10.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 11
ΠΡΠ°ΠΏ 11.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 11.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 11.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 11.2.1.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 11.2.1.2
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 11.2.1.2.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 11.2.1.2.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 11.2.1.2.3
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 11.2.1.2.4
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ°ΠΏ 11.2.1.2.5
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 11.2.1.2.6
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 11.2.1.2.6.1
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 11.2.1.2.6.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 11.2.1.2.6.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 11.2.1.2.6.4
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 11.2.1.2.6.4.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 11.2.1.2.6.4.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 11.2.1.2.6.5
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ°ΠΏ 11.2.1.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 11.2.1.3.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 11.2.1.3.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 12
ΠΡΠ°ΠΏ 12.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π½Π° .
ΠΡΠ°ΠΏ 12.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 12.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 12.2.1.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 12.2.1.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 12.2.1.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 12.2.1.3.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 12.2.1.3.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 12.2.1.3.3
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 12.2.1.3.4
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ°ΠΏ 12.2.1.3.5
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 12.2.1.3.6
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 12.2.1.3.6.1
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 12.2.1.3.6.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 12.2.1.3.6.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 12.2.1.3.6.4
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 12.2.1.3.6.4.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 12.2.1.3.6.4.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 12.2.1.3.6.5
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ°ΠΏ 12.2.1.4
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 12.2.1.4.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 12.2.1.4.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 13
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡΒ β ΠΏΠΎΠ»Π½ΡΠΉ Π½Π°Π±ΠΎΡ ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½Π½ΡΡ
ΠΏΠ°Ρ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΡΠΎΠ±ΠΎΠΉ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 14
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅.
Π Π²ΠΈΠ΄Π΅ ΡΠΎΡΠΊΠΈ:
Π€ΠΎΡΠΌΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΡΠ°ΠΏ 15