Введите задачу...
ΠΡΠ½ΠΎΠ²Ρ ΠΌΠ°Ρ. Π°Π½Π°Π»ΠΈΠ·Π° ΠΡΠΈΠΌΠ΅ΡΡ
ΠΡΠ°ΠΏ 1
Π§ΡΠΎΠ±Ρ ΠΈΠ·Π±Π°Π²ΠΈΡΡΡΡ ΠΎΡ ΡΠ°Π΄ΠΈΠΊΠ°Π»Π° Π² Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, Π²ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π² ΠΊΠ²Π°Π΄ΡΠ°Ρ.
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 2.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.3.1
ΠΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ Π² .
ΠΡΠ°ΠΏ 2.3.1.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 2.3.1.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.4
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.4.1
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 3
ΠΡΠ°ΠΏ 3.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
ΠΡΠ°ΠΏ 3.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.2.1.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΈΠ·-ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΠ½Ρ.
ΠΡΠ°ΠΏ 3.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.2.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 3.2.2.1.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 3.2.2.1.2
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΈΠ·-ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΠ½Ρ.
ΠΡΠ°ΠΏ 3.2.2.1.3
ΠΠ±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΈΡΠ»ΠΎΠΌ ΠΈ Π½ΡΠ»Π΅ΠΌ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΈ ΡΠ°Π²Π½ΠΎ .
ΠΡΠ°ΠΏ 3.3
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ ΠΊΡΡΠΎΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ°ΠΏ 3.3.1
Π§ΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΡΡΠΊΠ°, Π½Π°ΠΉΠ΄Π΅ΠΌ, Π½Π° ΠΊΠ°ΠΊΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ.
ΠΡΠ°ΠΏ 3.3.2
Π Π΅ΡΠΈΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΡΠ°ΠΏ 3.3.2.1
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠ°ΠΏ 3.3.2.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 3.3.2.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 3.3.2.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.3.2.2.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 3.3.2.2.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 3.3.2.2.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.3.2.2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.3.2.2.3.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 3.3.3
Π ΡΠ°ΡΡΠΈ, Π³Π΄Π΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΈΡΠΊΠ»ΡΡΠΈΠΌ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 3.3.4
Π§ΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π΄Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΡΡΠΊΠ°, Π½Π°ΠΉΠ΄Π΅ΠΌ, Π½Π° ΠΊΠ°ΠΊΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ.
ΠΡΠ°ΠΏ 3.3.5
Π Π΅ΡΠΈΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΡΠ°ΠΏ 3.3.5.1
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠ°ΠΏ 3.3.5.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 3.3.5.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 3.3.5.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.3.5.2.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 3.3.5.2.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 3.3.5.2.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.3.5.2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.3.5.2.3.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 3.3.6
Π ΡΠ°ΡΡΠΈ, Π³Π΄Π΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΈΡΠΊΠ»ΡΡΠΈΠΌ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.3.7
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ ΠΊΡΡΠΎΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ°ΠΏ 3.3.8
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 3.3.8.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 3.3.8.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.3.8.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.4
Π Π΅ΡΠΈΠΌ , ΠΊΠΎΠ³Π΄Π° .
ΠΡΠ°ΠΏ 3.4.1
Π Π΅ΡΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.4.1.1
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠ°ΠΏ 3.4.1.1.1
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠ°ΠΏ 3.4.1.1.2
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· .
ΠΡΠ°ΠΏ 3.4.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 3.4.1.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 3.4.1.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.4.1.2.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 3.4.1.2.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 3.4.1.2.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.4.1.2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.4.1.2.3.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.4.2
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ .
ΠΡΠ°ΠΏ 3.5
Π Π΅ΡΠΈΠΌ , ΠΊΠΎΠ³Π΄Π° .
ΠΡΠ°ΠΏ 3.5.1
Π Π΅ΡΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 3.5.1.1
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠ°ΠΏ 3.5.1.1.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠ°ΠΏ 3.5.1.1.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3.5.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 3.5.1.2.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° . ΠΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ»ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π·Π°ΠΌΠ΅Π½ΠΈΠΌ Π·Π½Π°ΠΊ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ.
ΠΡΠ°ΠΏ 3.5.1.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.5.1.2.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 3.5.1.2.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 3.5.1.2.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.5.1.2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 3.5.1.2.3.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.5.2
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ .
ΠΡΠ°ΠΏ 3.6
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ.
ΠΡΠ°ΠΏ 4
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅.
Π€ΠΎΡΠΌΠ° Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
ΠΠ½ΡΠ΅ΡΠ²Π°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅:
ΠΡΠ°ΠΏ 5