Введите задачу...
ΠΡΠ½ΠΎΠ²Ρ Π°Π»Π³Π΅Π±ΡΡ ΠΡΠΈΠΌΠ΅ΡΡ
,
ΠΡΠ°ΠΏ 1
Use the dot product formula to find the angle between two vectors.
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
The dot product of two vectors is the sum of the products of the their components.
ΠΡΠ°ΠΏ 2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 2.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΠ°ΠΏ 2.2.1.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.2.1.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.2.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3
ΠΡΠ°ΠΏ 3.1
The norm is the square root of the sum of squares of each element in the vector.
ΠΡΠ°ΠΏ 3.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 3.2.1
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 3.2.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 3.2.3
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3.2.4
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 3.2.4.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 3.2.4.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 3.2.5
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΈΠ·-ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΠ½Ρ.
ΠΡΠ°ΠΏ 4
ΠΡΠ°ΠΏ 4.1
The norm is the square root of the sum of squares of each element in the vector.
ΠΡΠ°ΠΏ 4.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 4.2.1
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 4.2.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 4.2.3
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 5
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ.
ΠΡΠ°ΠΏ 6
ΠΡΠ°ΠΏ 6.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈ .
ΠΡΠ°ΠΏ 6.1.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 6.1.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
ΠΡΠ°ΠΏ 6.1.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 6.1.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.1.2.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 6.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.2.1
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΠΎΠ².
ΠΡΠ°ΠΏ 6.2.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.3.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 6.3.1.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 6.3.1.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 6.3.2
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΈΠ·-ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΠ½Ρ.
ΠΡΠ°ΠΏ 6.4
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈ .
ΠΡΠ°ΠΏ 6.4.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 6.4.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
ΠΡΠ°ΠΏ 6.4.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 6.4.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.4.2.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 6.5
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6.6
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.6.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6.6.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 6.6.3
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 6.6.4
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ°ΠΏ 6.6.5
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 6.6.6
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 6.6.6.1
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 6.6.6.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 6.6.6.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 6.6.6.4
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 6.6.6.4.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.6.6.4.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 6.6.6.5
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ°ΠΏ 6.7
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .