ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Solve Using a Matrix by Row Operations -4x-y+7z=9 , 8y+6z=-6 , 4x+2y+6z=1-22
, ,
Π­Ρ‚Π°ΠΏ 1
Π’Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΈΠ· .
Π­Ρ‚Π°ΠΏ 2
Write the system as a matrix.
Π­Ρ‚Π°ΠΏ 3
ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ ΠΊ стандартной Ρ„ΠΎΡ€ΠΌΠ΅ ΠΏΠΎ строкам.
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.1
Multiply each element of by to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.1.1
Multiply each element of by to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.1.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.2
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.2.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.2.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.3
Multiply each element of by to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.3.1
Multiply each element of by to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.3.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.4
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.4.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.4.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.5
Multiply each element of by to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.5.1
Multiply each element of by to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.5.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.6
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.6.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.6.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.7
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.7.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.7.2
Упростим .
Π­Ρ‚Π°ΠΏ 3.8
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 3.8.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 3.8.2
Упростим .
Π­Ρ‚Π°ΠΏ 4
Use the result matrix to declare the final solution to the system of equations.
Π­Ρ‚Π°ΠΏ 5
The solution is the set of ordered pairs that make the system true.