Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.2
Умножим на .
Этап 3.3.3
По правилу суммы производная по имеет вид .
Этап 3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.6
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.3.6.1
Добавим и .
Этап 3.3.6.2
Умножим на .
Этап 3.3.6.3
Вычтем из .
Этап 3.3.6.4
Добавим и .
Этап 3.3.6.5
Объединим и .
Этап 3.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Применим правило умножения к .
Этап 3.4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Умножим на .
Этап 3.4.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Применим правило степени для объединения показателей.
Этап 3.4.2.2.2
Добавим и .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .