Математический анализ Примеры

Trovare dy/dx y=(x^2+2)( натуральный логарифм от x^2+1)
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Производная по равна .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.3.1
По правилу суммы производная по имеет вид .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.4
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.3.4.1
Добавим и .
Этап 3.3.4.2
Объединим и .
Этап 3.3.4.3
Объединим и .
Этап 3.3.4.4
Перенесем влево от .
Этап 3.3.5
По правилу суммы производная по имеет вид .
Этап 3.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.8
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.3.8.1
Добавим и .
Этап 3.3.8.2
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .