Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.4
Добавим и .
Этап 1.1.3
Возведем в степень .
Этап 1.1.4
Возведем в степень .
Этап 1.1.5
Применим правило степени для объединения показателей.
Этап 1.1.6
Добавим и .
Этап 1.1.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.8
Умножим на .
Этап 1.1.9
Упростим.
Этап 1.1.9.1
Применим свойство дистрибутивности.
Этап 1.1.9.2
Упростим числитель.
Этап 1.1.9.2.1
Умножим на .
Этап 1.1.9.2.2
Вычтем из .
Этап 1.1.9.3
Упростим числитель.
Этап 1.1.9.3.1
Перепишем в виде .
Этап 1.1.9.3.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Решим уравнение относительно .
Этап 2.3.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3.2
Приравняем к , затем решим относительно .
Этап 2.3.2.1
Приравняем к .
Этап 2.3.2.2
Вычтем из обеих частей уравнения.
Этап 2.3.3
Приравняем к , затем решим относительно .
Этап 2.3.3.1
Приравняем к .
Этап 2.3.3.2
Добавим к обеим частям уравнения.
Этап 2.3.4
Окончательным решением являются все значения, при которых верно.
Этап 3
Значения, при которых производная равна : .
Этап 4
Этап 4.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4.2
Решим относительно .
Этап 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4.2.2
Упростим .
Этап 4.2.2.1
Перепишем в виде .
Этап 4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.2.3
Плюс или минус равно .
Этап 5
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим числитель.
Этап 6.2.1.1
Добавим и .
Этап 6.2.1.2
Вычтем из .
Этап 6.2.2
Упростим выражение.
Этап 6.2.2.1
Возведем в степень .
Этап 6.2.2.2
Умножим на .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Упростим числитель.
Этап 7.2.1.1
Добавим и .
Этап 7.2.1.2
Вычтем из .
Этап 7.2.2
Упростим выражение.
Этап 7.2.2.1
Возведем в степень .
Этап 7.2.2.2
Умножим на .
Этап 7.2.2.3
Разделим на .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Этап 8.2.1
Упростим числитель.
Этап 8.2.1.1
Добавим и .
Этап 8.2.1.2
Вычтем из .
Этап 8.2.2
Упростим выражение.
Этап 8.2.2.1
Возведем в степень .
Этап 8.2.2.2
Умножим на .
Этап 8.2.2.3
Разделим на .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 9
Этап 9.1
Заменим в этом выражении переменную на .
Этап 9.2
Упростим результат.
Этап 9.2.1
Упростим числитель.
Этап 9.2.1.1
Добавим и .
Этап 9.2.1.2
Вычтем из .
Этап 9.2.2
Упростим выражение.
Этап 9.2.2.1
Возведем в степень .
Этап 9.2.2.2
Умножим на .
Этап 9.2.3
Окончательный ответ: .
Этап 9.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 10
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 11