Математический анализ Примеры

Найти локальный максимум и минимум f(x)=(x+2)^2(x-1)
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем в виде .
Этап 1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Применим свойство дистрибутивности.
Этап 1.2.3
Применим свойство дистрибутивности.
Этап 1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Умножим на .
Этап 1.3.1.2
Перенесем влево от .
Этап 1.3.1.3
Умножим на .
Этап 1.3.2
Добавим и .
Этап 1.4
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.5.1
По правилу суммы производная по имеет вид .
Этап 1.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.5.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.5.4.1
Добавим и .
Этап 1.5.4.2
Умножим на .
Этап 1.5.5
По правилу суммы производная по имеет вид .
Этап 1.5.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5.7
Поскольку является константой относительно , производная по равна .
Этап 1.5.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5.9
Умножим на .
Этап 1.5.10
Поскольку является константой относительно , производная относительно равна .
Этап 1.5.11
Добавим и .
Этап 1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Применим свойство дистрибутивности.
Этап 1.6.2
Применим свойство дистрибутивности.
Этап 1.6.3
Применим свойство дистрибутивности.
Этап 1.6.4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.6.4.1
Возведем в степень .
Этап 1.6.4.2
Возведем в степень .
Этап 1.6.4.3
Применим правило степени для объединения показателей.
Этап 1.6.4.4
Добавим и .
Этап 1.6.4.5
Умножим на .
Этап 1.6.4.6
Перенесем влево от .
Этап 1.6.4.7
Умножим на .
Этап 1.6.4.8
Добавим и .
Этап 1.6.4.9
Добавим и .
Этап 1.6.4.10
Добавим и .
Этап 1.6.4.11
Вычтем из .
Этап 1.6.4.12
Добавим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Перепишем в виде .
Этап 4.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Применим свойство дистрибутивности.
Этап 4.1.2.2
Применим свойство дистрибутивности.
Этап 4.1.2.3
Применим свойство дистрибутивности.
Этап 4.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.3.1.1
Умножим на .
Этап 4.1.3.1.2
Перенесем влево от .
Этап 4.1.3.1.3
Умножим на .
Этап 4.1.3.2
Добавим и .
Этап 4.1.4
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4.1.5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1.5.1
По правилу суммы производная по имеет вид .
Этап 4.1.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.1.5.4.1
Добавим и .
Этап 4.1.5.4.2
Умножим на .
Этап 4.1.5.5
По правилу суммы производная по имеет вид .
Этап 4.1.5.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5.7
Поскольку является константой относительно , производная по равна .
Этап 4.1.5.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5.9
Умножим на .
Этап 4.1.5.10
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5.11
Добавим и .
Этап 4.1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.6.1
Применим свойство дистрибутивности.
Этап 4.1.6.2
Применим свойство дистрибутивности.
Этап 4.1.6.3
Применим свойство дистрибутивности.
Этап 4.1.6.4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.1.6.4.1
Возведем в степень .
Этап 4.1.6.4.2
Возведем в степень .
Этап 4.1.6.4.3
Применим правило степени для объединения показателей.
Этап 4.1.6.4.4
Добавим и .
Этап 4.1.6.4.5
Умножим на .
Этап 4.1.6.4.6
Перенесем влево от .
Этап 4.1.6.4.7
Умножим на .
Этап 4.1.6.4.8
Добавим и .
Этап 4.1.6.4.9
Добавим и .
Этап 4.1.6.4.10
Добавим и .
Этап 4.1.6.4.11
Вычтем из .
Этап 4.1.6.4.12
Добавим и .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к .
Этап 5.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Вычтем из обеих частей уравнения.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Умножим на .
Этап 9.2
Добавим и .
Этап 10
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 11
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Добавим и .
Этап 11.2.2
Возведем в степень .
Этап 11.2.3
Вычтем из .
Этап 11.2.4
Умножим на .
Этап 11.2.5
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Добавим и .
Этап 14
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Добавим и .
Этап 15.2.2
Возведение в любую положительную степень дает .
Этап 15.2.3
Вычтем из .
Этап 15.2.4
Умножим на .
Этап 15.2.5
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
 — локальный минимум
 — локальный максимум
Этап 17