Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Упростим выражение.
Этап 3.5.1
Добавим и .
Этап 3.5.2
Умножим на .
Этап 3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Этап 4.1
Перенесем .
Этап 4.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.3
Объединим и .
Этап 4.4
Объединим числители над общим знаменателем.
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Упростим числитель.
Этап 5.3.1
Упростим каждый член.
Этап 5.3.1.1
Упростим путем переноса под логарифм.
Этап 5.3.1.2
Применим свойство дистрибутивности.
Этап 5.3.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 5.3.1.4
Умножим на , сложив экспоненты.
Этап 5.3.1.4.1
Перенесем .
Этап 5.3.1.4.2
Умножим на .
Этап 5.3.2
Изменим порядок множителей в .
Этап 5.4
Изменим порядок членов.