Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Добавим к обеим частям уравнения.
Этап 2.4
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Перепишем в виде .
Этап 2.4.2
Перепишем в виде .
Этап 2.4.3
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу суммы кубов, , где и .
Этап 2.4.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.4.1
Применим правило умножения к .
Этап 2.4.4.2
Возведем в степень .
Этап 2.4.4.3
Умножим на .
Этап 2.4.4.4
Умножим на .
Этап 2.4.4.5
Возведем в степень .
Этап 2.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.2.1
Вычтем из обеих частей уравнения.
Этап 2.6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.2.2.1
Разделим каждый член на .
Этап 2.6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.6.2.2.2.1.1
Сократим общий множитель.
Этап 2.6.2.2.2.1.2
Разделим на .
Этап 2.6.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.6.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 2.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Приравняем к .
Этап 2.7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.7.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.7.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.7.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.7.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.7.2.3.1.1
Возведем в степень .
Этап 2.7.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.7.2.3.1.2.1
Умножим на .
Этап 2.7.2.3.1.2.2
Умножим на .
Этап 2.7.2.3.1.3
Вычтем из .
Этап 2.7.2.3.1.4
Перепишем в виде .
Этап 2.7.2.3.1.5
Перепишем в виде .
Этап 2.7.2.3.1.6
Перепишем в виде .
Этап 2.7.2.3.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.7.2.3.1.7.1
Вынесем множитель из .
Этап 2.7.2.3.1.7.2
Перепишем в виде .
Этап 2.7.2.3.1.8
Вынесем члены из-под знака корня.
Этап 2.7.2.3.1.9
Перенесем влево от .
Этап 2.7.2.3.2
Умножим на .
Этап 2.7.2.3.3
Упростим .
Этап 2.7.2.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.7.2.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.7.2.4.1.1
Возведем в степень .
Этап 2.7.2.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.7.2.4.1.2.1
Умножим на .
Этап 2.7.2.4.1.2.2
Умножим на .
Этап 2.7.2.4.1.3
Вычтем из .
Этап 2.7.2.4.1.4
Перепишем в виде .
Этап 2.7.2.4.1.5
Перепишем в виде .
Этап 2.7.2.4.1.6
Перепишем в виде .
Этап 2.7.2.4.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.7.2.4.1.7.1
Вынесем множитель из .
Этап 2.7.2.4.1.7.2
Перепишем в виде .
Этап 2.7.2.4.1.8
Вынесем члены из-под знака корня.
Этап 2.7.2.4.1.9
Перенесем влево от .
Этап 2.7.2.4.2
Умножим на .
Этап 2.7.2.4.3
Упростим .
Этап 2.7.2.4.4
Заменим на .
Этап 2.7.2.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.7.2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.7.2.5.1.1
Возведем в степень .
Этап 2.7.2.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.7.2.5.1.2.1
Умножим на .
Этап 2.7.2.5.1.2.2
Умножим на .
Этап 2.7.2.5.1.3
Вычтем из .
Этап 2.7.2.5.1.4
Перепишем в виде .
Этап 2.7.2.5.1.5
Перепишем в виде .
Этап 2.7.2.5.1.6
Перепишем в виде .
Этап 2.7.2.5.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.7.2.5.1.7.1
Вынесем множитель из .
Этап 2.7.2.5.1.7.2
Перепишем в виде .
Этап 2.7.2.5.1.8
Вынесем члены из-под знака корня.
Этап 2.7.2.5.1.9
Перенесем влево от .
Этап 2.7.2.5.2
Умножим на .
Этап 2.7.2.5.3
Упростим .
Этап 2.7.2.5.4
Заменим на .
Этап 2.7.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 2.8
Окончательным решением являются все значения, при которых верно.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1.1
Применим правило умножения к .
Этап 4.1.2.1.1.2
Применим правило умножения к .
Этап 4.1.2.1.2
Возведем в степень .
Этап 4.1.2.1.3
Умножим на .
Этап 4.1.2.1.4
Возведем в степень .
Этап 4.1.2.1.5
Возведем в степень .
Этап 4.1.2.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.6.1
Вынесем множитель из .
Этап 4.1.2.1.6.2
Сократим общий множитель.
Этап 4.1.2.1.6.3
Перепишем это выражение.
Этап 4.1.2.1.7
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.7.1
Умножим на .
Этап 4.1.2.1.7.2
Объединим и .
Этап 4.1.2.1.7.3
Умножим на .
Этап 4.1.2.1.8
Вынесем знак минуса перед дробью.
Этап 4.1.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.1.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.2.3.1
Умножим на .
Этап 4.1.2.3.2
Умножим на .
Этап 4.1.2.4
Объединим числители над общим знаменателем.
Этап 4.1.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.2.5.1
Умножим на .
Этап 4.1.2.5.2
Вычтем из .
Этап 4.1.2.6
Вынесем знак минуса перед дробью.
Этап 4.2
Перечислим все точки.
Этап 5