Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (e^x)/(5x+200), если x стремится к infinity
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Поскольку показатель степени стремится к , величина стремится к .
Этап 1.3
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3
Умножим на .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Добавим и .
Этап 4
Поскольку функция стремится к , произведение положительной константы и функции стремится к .
Нажмите для увеличения количества этапов...
Этап 4.1
Рассмотрим предел с исключенной константой, кратной .
Этап 4.2
Поскольку показатель степени стремится к , величина стремится к .