Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (x^3-7x^2+10x)/(x^2+x-6), если x стремится к 2
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.2.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.2.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.6
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Найдем предел , подставив значение для .
Этап 1.2.6.2
Найдем предел , подставив значение для .
Этап 1.2.6.3
Найдем предел , подставив значение для .
Этап 1.2.7
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.7.1.1
Возведем в степень .
Этап 1.2.7.1.2
Возведем в степень .
Этап 1.2.7.1.3
Умножим на .
Этап 1.2.7.1.4
Умножим на .
Этап 1.2.7.2
Вычтем из .
Этап 1.2.7.3
Добавим и .
Этап 1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.3.3
Найдем предел , который является константой по мере приближения к .
Этап 1.3.4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Найдем предел , подставив значение для .
Этап 1.3.4.2
Найдем предел , подставив значение для .
Этап 1.3.5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.3.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.5.1.1
Возведем в степень .
Этап 1.3.5.1.2
Умножим на .
Этап 1.3.5.2
Добавим и .
Этап 1.3.5.3
Вычтем из .
Этап 1.3.5.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.6
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3
Умножим на .
Этап 3.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Поскольку является константой относительно , производная по равна .
Этап 3.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5.3
Умножим на .
Этап 3.6
По правилу суммы производная по имеет вид .
Этап 3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.9
Поскольку является константой относительно , производная относительно равна .
Этап 3.10
Добавим и .
Этап 4
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 9
Найдем предел , который является константой по мере приближения к .
Этап 10
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 11
Вынесем член из-под знака предела, так как он не зависит от .
Этап 12
Найдем предел , который является константой по мере приближения к .
Этап 13
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 13.1
Найдем предел , подставив значение для .
Этап 13.2
Найдем предел , подставив значение для .
Этап 13.3
Найдем предел , подставив значение для .
Этап 14
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 14.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 14.1.1
Возведем в степень .
Этап 14.1.2
Умножим на .
Этап 14.1.3
Умножим на .
Этап 14.1.4
Вычтем из .
Этап 14.1.5
Добавим и .
Этап 14.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 14.2.1
Умножим на .
Этап 14.2.2
Добавим и .
Этап 14.3
Вынесем знак минуса перед дробью.