Введите задачу...
Математический анализ Примеры
,
Этап 1
Составим параметрическое уравнение для , чтобы решить это уравнение в отношении .
Этап 2
Перепишем уравнение в виде .
Этап 3
Добавим к обеим частям уравнения.
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 5
Заменим в уравнении на , чтобы получить уравнение, выраженное через .
Этап 6
Этап 6.1
Упростим каждый член.
Этап 6.1.1
Перепишем в виде .
Этап 6.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 6.1.2.1
Применим свойство дистрибутивности.
Этап 6.1.2.2
Применим свойство дистрибутивности.
Этап 6.1.2.3
Применим свойство дистрибутивности.
Этап 6.1.3
Упростим и объединим подобные члены.
Этап 6.1.3.1
Упростим каждый член.
Этап 6.1.3.1.1
Умножим .
Этап 6.1.3.1.1.1
Умножим на .
Этап 6.1.3.1.1.2
Возведем в степень .
Этап 6.1.3.1.1.3
Возведем в степень .
Этап 6.1.3.1.1.4
Применим правило степени для объединения показателей.
Этап 6.1.3.1.1.5
Добавим и .
Этап 6.1.3.1.1.6
Умножим на .
Этап 6.1.3.1.2
Умножим .
Этап 6.1.3.1.2.1
Умножим на .
Этап 6.1.3.1.2.2
Умножим на .
Этап 6.1.3.1.3
Умножим .
Этап 6.1.3.1.3.1
Умножим на .
Этап 6.1.3.1.3.2
Умножим на .
Этап 6.1.3.1.4
Умножим .
Этап 6.1.3.1.4.1
Умножим на .
Этап 6.1.3.1.4.2
Умножим на .
Этап 6.1.3.2
Добавим и .
Этап 6.1.4
Сократим общий множитель .
Этап 6.1.4.1
Вынесем множитель из .
Этап 6.1.4.2
Сократим общий множитель.
Этап 6.1.4.3
Перепишем это выражение.
Этап 6.1.5
Применим свойство дистрибутивности.
Этап 6.1.6
Упростим.
Этап 6.1.6.1
Сократим общий множитель .
Этап 6.1.6.1.1
Вынесем множитель из .
Этап 6.1.6.1.2
Сократим общий множитель.
Этап 6.1.6.1.3
Перепишем это выражение.
Этап 6.1.6.2
Сократим общий множитель .
Этап 6.1.6.2.1
Вынесем множитель из .
Этап 6.1.6.2.2
Сократим общий множитель.
Этап 6.1.6.2.3
Перепишем это выражение.
Этап 6.1.6.3
Сократим общий множитель .
Этап 6.1.6.3.1
Вынесем множитель из .
Этап 6.1.6.3.2
Сократим общий множитель.
Этап 6.1.6.3.3
Перепишем это выражение.
Этап 6.1.7
Применим свойство дистрибутивности.
Этап 6.1.8
Объединим и .
Этап 6.1.9
Объединим и .
Этап 6.2
Упростим члены.
Этап 6.2.1
Объединим числители над общим знаменателем.
Этап 6.2.2
Добавим и .
Этап 6.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.4
Объединим и .
Этап 6.5
Объединим числители над общим знаменателем.
Этап 6.6
Упростим числитель.
Этап 6.6.1
Умножим на .
Этап 6.6.2
Добавим и .
Этап 6.7
Вынесем знак минуса перед дробью.
Этап 6.8
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.9
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 6.9.1
Умножим на .
Этап 6.9.2
Умножим на .
Этап 6.10
Упростим члены.
Этап 6.10.1
Объединим числители над общим знаменателем.
Этап 6.10.2
Объединим числители над общим знаменателем.
Этап 6.11
Упростим каждый член.
Этап 6.11.1
Применим свойство дистрибутивности.
Этап 6.11.2
Умножим на .
Этап 6.11.3
Умножим на .
Этап 6.12
Вычтем из .