Математический анализ Примеры

Этап 1
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.1
Изменим порядок членов.
Этап 1.1.1.4.2
Изменим порядок множителей в .
Этап 1.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2.3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.4.1
Применим свойство дистрибутивности.
Этап 1.1.2.4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.2.4.2.1
Умножим на .
Этап 1.1.2.4.2.2
Добавим и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.4.2.2.1
Перенесем .
Этап 1.1.2.4.2.2.2
Добавим и .
Этап 1.1.2.4.3
Изменим порядок членов.
Этап 1.1.2.4.4
Изменим порядок множителей в .
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.1.4
Вынесем множитель из .
Этап 1.2.2.1.5
Вынесем множитель из .
Этап 1.2.2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2.2.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 1.2.4.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.1
Перепишем в виде .
Этап 1.2.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.2.4.2.2.3
Плюс или минус равно .
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 1.2.5.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 1.2.5.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 1.2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Приравняем к .
Этап 1.2.6.2
Вычтем из обеих частей уравнения.
Этап 1.2.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Приравняем к .
Этап 1.2.7.2
Вычтем из обеих частей уравнения.
Этап 1.2.8
Окончательным решением являются все значения, при которых верно.
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Возведем в степень .
Этап 4.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.1.3
Объединим и .
Этап 4.2.1.4
Возведем в степень .
Этап 4.2.1.5
Умножим на .
Этап 4.2.1.6
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.1.7
Объединим и .
Этап 4.2.1.8
Вынесем знак минуса перед дробью.
Этап 4.2.1.9
Возведем в степень .
Этап 4.2.1.10
Умножим на .
Этап 4.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.1.12
Объединим и .
Этап 4.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Объединим числители над общим знаменателем.
Этап 4.2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Вычтем из .
Этап 4.2.2.2.2
Добавим и .
Этап 4.2.3
Окончательный ответ: .
Этап 4.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.3
Объединим и .
Этап 5.2.1.4
Возведем в степень .
Этап 5.2.1.5
Умножим на .
Этап 5.2.1.6
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.7
Объединим и .
Этап 5.2.1.8
Вынесем знак минуса перед дробью.
Этап 5.2.1.9
Возведем в степень .
Этап 5.2.1.10
Умножим на .
Этап 5.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.12
Объединим и .
Этап 5.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Объединим числители над общим знаменателем.
Этап 5.2.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Вычтем из .
Этап 5.2.2.2.2
Добавим и .
Этап 5.2.2.2.3
Вынесем знак минуса перед дробью.
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 6
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.4
Возведем в степень .
Этап 6.2.1.5
Умножим на .
Этап 6.2.1.6
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.7
Объединим и .
Этап 6.2.1.8
Вынесем знак минуса перед дробью.
Этап 6.2.1.9
Возведем в степень .
Этап 6.2.1.10
Умножим на .
Этап 6.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.12
Объединим и .
Этап 6.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Объединим числители над общим знаменателем.
Этап 6.2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Вычтем из .
Этап 6.2.2.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 7
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Возведем в степень .
Этап 7.2.1.3
Умножим на .
Этап 7.2.1.4
Возведем в степень .
Этап 7.2.1.5
Умножим на .
Этап 7.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Добавим и .
Этап 7.2.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 8
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 9