Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных 4x^3-4x
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Умножим на .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.3
Умножим на .
Этап 2.2
Первая производная по равна .
Этап 3
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Добавим к обеим частям уравнения.
Этап 3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.1
Вынесем множитель из .
Этап 3.3.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.2.1
Вынесем множитель из .
Этап 3.3.3.1.2.2
Сократим общий множитель.
Этап 3.3.3.1.2.3
Перепишем это выражение.
Этап 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Перепишем в виде .
Этап 3.5.2
Любой корень из равен .
Этап 3.5.3
Умножим на .
Этап 3.5.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.5.4.1
Умножим на .
Этап 3.5.4.2
Возведем в степень .
Этап 3.5.4.3
Возведем в степень .
Этап 3.5.4.4
Применим правило степени для объединения показателей.
Этап 3.5.4.5
Добавим и .
Этап 3.5.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.5.4.6.1
С помощью запишем в виде .
Этап 3.5.4.6.2
Применим правило степени и перемножим показатели, .
Этап 3.5.4.6.3
Объединим и .
Этап 3.5.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.4.6.4.1
Сократим общий множитель.
Этап 3.5.4.6.4.2
Перепишем это выражение.
Этап 3.5.4.6.5
Найдем экспоненту.
Этап 3.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Значения, при которых производная равна : .
Этап 5
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведение в любую положительную степень дает .
Этап 7.2.1.2
Умножим на .
Этап 7.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Умножим на .
Этап 8.2.2
Вычтем из .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 9
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 10