Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (x^4)/( натуральный логарифм x), когда x стремится к infinity
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 1.3
Когда логарифм стремится к бесконечности, значение стремится к .
Этап 1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Производная по равна .
Этап 4
Умножим числитель на величину, обратную знаменателю.
Этап 5
Объединим множители.
Нажмите для увеличения количества этапов...
Этап 5.1
Возведем в степень .
Этап 5.2
Применим правило степени для объединения показателей.
Этап 5.3
Добавим и .
Этап 6
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.