Введите задачу...
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΡΠΈΠΌΠ΅ΡΡ
;
ΠΡΠ°ΠΏ 1
ΠΡΠ°ΠΏ 1.1
ΠΠ°Π΄Π°Π΄ΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π² ΡΠ°Π²Π½ΡΠΌ , ΡΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ, Π³Π΄Π΅ Π΄Π°Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ.
ΠΡΠ°ΠΏ 1.2
Π Π΅ΡΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 1.2.1
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 1.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ΠΡΠ°ΠΏ 1.2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 1.2.3.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 1.2.3.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 1.2.3.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 1.2.3.4
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 1.2.3.5
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΈΠ·-ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΠ½Ρ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ, ΡΡΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π° ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ.
ΠΡΠ°ΠΏ 1.2.3.6
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 1.2.4
ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 1.2.4.1
Π‘Π½Π°ΡΠ°Π»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 1.2.4.2
ΠΠ°ΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ , Π½Π°ΠΉΠ΄Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 1.2.4.3
ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 1.3
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΒ β Π²ΡΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ½ΡΠ΅ΡΠ²Π°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅:
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°:
ΠΠ½ΡΠ΅ΡΠ²Π°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅:
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°:
ΠΡΠ°ΠΏ 2
Β β Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΎΠ±Π»Π°ΡΡΠΈ .
Β β Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅
ΠΡΠ°ΠΏ 3
Π‘ΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 4
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ°ΠΏ 5
ΠΡΠ°ΠΏ 5.1
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΠΈ .
ΠΡΠ°ΠΏ 5.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 6
ΠΠ½ΡΠ΅Π³ΡΠ°Π» ΠΏΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ .
ΠΡΠ°ΠΏ 7
ΠΡΠ°ΠΏ 7.1
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 7.2
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 7.2.1
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² ΠΈ Π² .
ΠΡΠ°ΠΏ 7.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 7.2.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 7.2.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 7.2.2.1.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 7.2.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈ .
ΠΡΠ°ΠΏ 7.2.2.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 7.2.2.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
ΠΡΠ°ΠΏ 7.2.2.2.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 7.2.2.2.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 7.2.2.2.2.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 7.2.2.2.2.4
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 7.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 7.3.1
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 7.3.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΠ°ΠΏ 7.3.2.1
Π’ΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ : .
ΠΡΠ°ΠΏ 7.3.2.2
Π’ΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ : .
ΠΡΠ°ΠΏ 7.3.2.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ .
ΠΡΠ°ΠΏ 7.3.2.3.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 7.3.2.3.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 7.3.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 7.3.4
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 7.3.5
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈ .
ΠΡΠ°ΠΏ 7.3.5.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 7.3.5.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
ΠΡΠ°ΠΏ 7.3.5.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 7.3.5.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 7.3.5.2.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 7.3.6
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 7.3.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ .
ΠΡΠ°ΠΏ 7.3.7.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 7.3.7.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 8
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 9
ΠΡΠ°ΠΏ 9.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 9.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 10