Математический анализ Примеры

Найти точки перегиба f(x)=x^4e^x
Этап 1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Изменим порядок членов.
Этап 1.1.4.2
Изменим порядок множителей в .
Этап 1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2.3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Применим свойство дистрибутивности.
Этап 1.2.4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Умножим на .
Этап 1.2.4.2.2
Добавим и .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.1
Перенесем .
Этап 1.2.4.2.2.2
Добавим и .
Этап 1.2.4.3
Изменим порядок членов.
Этап 1.2.4.4
Изменим порядок множителей в .
Этап 1.3
Вторая производная по равна .
Этап 2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть вторая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Вынесем множитель из .
Этап 2.2.1.3
Вынесем множитель из .
Этап 2.2.1.4
Вынесем множитель из .
Этап 2.2.1.5
Вынесем множитель из .
Этап 2.2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2.2.2
Избавимся от ненужных скобок.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.4.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1
Перепишем в виде .
Этап 2.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.4.2.2.3
Плюс или минус равно .
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2.5.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 2.5.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Вычтем из обеих частей уравнения.
Этап 2.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Приравняем к .
Этап 2.7.2
Вычтем из обеих частей уравнения.
Этап 2.8
Окончательным решением являются все значения, при которых верно.
Этап 3
Найдем точки, в которых вторая производная равна .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Заменим в этом выражении переменную на .
Этап 3.1.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Возведение в любую положительную степень дает .
Этап 3.1.2.2
Любое число в степени равно .
Этап 3.1.2.3
Умножим на .
Этап 3.1.2.4
Окончательный ответ: .
Этап 3.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.3
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Возведем в степень .
Этап 3.3.2.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.3.2.3
Объединим и .
Этап 3.3.2.4
Окончательный ответ: .
Этап 3.4
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.5
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Заменим в этом выражении переменную на .
Этап 3.5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.5.2.1
Возведем в степень .
Этап 3.5.2.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.5.2.3
Объединим и .
Этап 3.5.2.4
Окончательный ответ: .
Этап 3.6
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.7
Определим точки, которые могут быть точками перегиба.
Этап 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 5
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.3
Объединим и .
Этап 5.2.1.4
Заменим приближением.
Этап 5.2.1.5
Возведем в степень .
Этап 5.2.1.6
Разделим на .
Этап 5.2.1.7
Возведем в степень .
Этап 5.2.1.8
Умножим на .
Этап 5.2.1.9
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.10
Объединим и .
Этап 5.2.1.11
Вынесем знак минуса перед дробью.
Этап 5.2.1.12
Заменим приближением.
Этап 5.2.1.13
Возведем в степень .
Этап 5.2.1.14
Разделим на .
Этап 5.2.1.15
Умножим на .
Этап 5.2.1.16
Возведем в степень .
Этап 5.2.1.17
Умножим на .
Этап 5.2.1.18
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.19
Объединим и .
Этап 5.2.1.20
Заменим приближением.
Этап 5.2.1.21
Возведем в степень .
Этап 5.2.1.22
Разделим на .
Этап 5.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вычтем из .
Этап 5.2.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.3
Объединим и .
Этап 6.2.1.4
Возведем в степень .
Этап 6.2.1.5
Умножим на .
Этап 6.2.1.6
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.7
Объединим и .
Этап 6.2.1.8
Вынесем знак минуса перед дробью.
Этап 6.2.1.9
Возведем в степень .
Этап 6.2.1.10
Умножим на .
Этап 6.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.12
Объединим и .
Этап 6.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Объединим числители над общим знаменателем.
Этап 6.2.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Вычтем из .
Этап 6.2.2.2.2
Добавим и .
Этап 6.2.2.2.3
Вынесем знак минуса перед дробью.
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 7.2.1.4
Возведем в степень .
Этап 7.2.1.5
Умножим на .
Этап 7.2.1.6
Перепишем выражение, используя правило отрицательных степеней .
Этап 7.2.1.7
Объединим и .
Этап 7.2.1.8
Вынесем знак минуса перед дробью.
Этап 7.2.1.9
Возведем в степень .
Этап 7.2.1.10
Умножим на .
Этап 7.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 7.2.1.12
Объединим и .
Этап 7.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Объединим числители над общим знаменателем.
Этап 7.2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1
Вычтем из .
Этап 7.2.2.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Умножим на .
Этап 8.2.1.3
Возведем в степень .
Этап 8.2.1.4
Умножим на .
Этап 8.2.1.5
Умножим на .
Этап 8.2.1.6
Возведем в степень .
Этап 8.2.1.7
Умножим на .
Этап 8.2.1.8
Умножим на .
Этап 8.2.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Добавим и .
Этап 8.2.2.2
Добавим и .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Этап 10