Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2
Производная по равна .
Этап 2.3.3
Заменим все вхождения на .
Этап 2.4
Поскольку является константой относительно , производная по равна .
Этап 2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
Объединим и .
Этап 2.8
Объединим и .
Этап 2.9
Объединим и .
Этап 2.10
Объединим и .
Этап 2.11
Возведем в степень .
Этап 2.12
Применим правило степени для объединения показателей.
Этап 2.13
Добавим и .
Этап 2.14
Перенесем влево от .
Этап 2.15
Умножим на .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Объединим термины.
Этап 3.2.1
Объединим и .
Этап 3.2.2
Умножим на .
Этап 3.2.3
Добавим и .
Этап 3.3
Упростим каждый член.
Этап 3.3.1
Вынесем множитель из .
Этап 3.3.2
Вынесем множитель из .
Этап 3.3.3
Разделим дроби.
Этап 3.3.4
Разделим на .
Этап 3.3.5
Разделим на .