Математический анализ Примеры

Найти вогнутость f(x)=e^(-2.5x^2)
Этап 1
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.1.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.1.1.3
Заменим все вхождения на .
Этап 1.1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Изменим порядок множителей в .
Этап 1.1.1.3.2
Изменим порядок множителей в .
Этап 1.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.2.3.3
Заменим все вхождения на .
Этап 1.1.2.4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4.3
Умножим на .
Этап 1.1.2.5
Возведем в степень .
Этап 1.1.2.6
Возведем в степень .
Этап 1.1.2.7
Применим правило степени для объединения показателей.
Этап 1.1.2.8
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.8.1
Добавим и .
Этап 1.1.2.8.2
Перенесем влево от .
Этап 1.1.2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.10
Умножим на .
Этап 1.1.2.11
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.11.1
Применим свойство дистрибутивности.
Этап 1.1.2.11.2
Умножим на .
Этап 1.1.2.11.3
Изменим порядок членов.
Этап 1.1.2.11.4
Изменим порядок множителей в .
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.2
Перепишем в виде .
Этап 1.2.2.3
Перепишем в виде .
Этап 1.2.2.4
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.4.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2.2.4.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 1.2.4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 1.2.4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.1
Разделим каждый член на .
Этап 1.2.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.5.2.2.2.1.2
Разделим на .
Этап 1.2.5.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.3.1
Разделим на .
Этап 1.2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Приравняем к .
Этап 1.2.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1
Добавим к обеим частям уравнения.
Этап 1.2.6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.1
Разделим каждый член на .
Этап 1.2.6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.6.2.2.2.1.2
Разделим на .
Этап 1.2.6.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.3.1
Разделим на .
Этап 1.2.7
Окончательным решением являются все значения, при которых верно.
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Возведем в степень .
Этап 4.2.1.2
Умножим на .
Этап 4.2.1.3
Возведем в степень .
Этап 4.2.1.4
Умножим на .
Этап 4.2.1.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.1.6
Объединим и .
Этап 4.2.1.7
Заменим приближением.
Этап 4.2.1.8
Возведем в степень .
Этап 4.2.1.9
Разделим на .
Этап 4.2.1.10
Возведем в степень .
Этап 4.2.1.11
Умножим на .
Этап 4.2.1.12
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.1.13
Объединим и .
Этап 4.2.1.14
Вынесем знак минуса перед дробью.
Этап 4.2.1.15
Заменим приближением.
Этап 4.2.1.16
Возведем в степень .
Этап 4.2.1.17
Разделим на .
Этап 4.2.1.18
Умножим на .
Этап 4.2.2
Вычтем из .
Этап 4.2.3
Окончательный ответ: .
Этап 4.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведение в любую положительную степень дает .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Возведение в любую положительную степень дает .
Этап 5.2.1.4
Умножим на .
Этап 5.2.1.5
Любое число в степени равно .
Этап 5.2.1.6
Умножим на .
Этап 5.2.1.7
Возведение в любую положительную степень дает .
Этап 5.2.1.8
Умножим на .
Этап 5.2.1.9
Любое число в степени равно .
Этап 5.2.1.10
Умножим на .
Этап 5.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 6
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Возведем в степень .
Этап 6.2.1.4
Умножим на .
Этап 6.2.1.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.6
Объединим и .
Этап 6.2.1.7
Заменим приближением.
Этап 6.2.1.8
Возведем в степень .
Этап 6.2.1.9
Разделим на .
Этап 6.2.1.10
Возведем в степень .
Этап 6.2.1.11
Умножим на .
Этап 6.2.1.12
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.13
Объединим и .
Этап 6.2.1.14
Вынесем знак минуса перед дробью.
Этап 6.2.1.15
Заменим приближением.
Этап 6.2.1.16
Возведем в степень .
Этап 6.2.1.17
Разделим на .
Этап 6.2.1.18
Умножим на .
Этап 6.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 7
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 8