Математический анализ Примеры

Найти локальный максимум и минимум y=x натуральный логарифм от x
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Производная по равна .
Этап 2.3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Объединим и .
Этап 2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель.
Этап 2.3.2.2
Перепишем это выражение.
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 3
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.2
Производная по равна .
Этап 3.3
Добавим и .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 5.1.2
Производная по равна .
Этап 5.1.3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Объединим и .
Этап 5.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.3.2.1
Сократим общий множитель.
Этап 5.1.3.2.2
Перепишем это выражение.
Этап 5.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.3.4
Умножим на .
Этап 5.2
Первая производная по равна .
Этап 6
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 6.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 6.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 6.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Перепишем уравнение в виде .
Этап 6.5.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 7
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 7.1
Зададим аргумент в меньшим или равным , чтобы узнать, где данное выражение не определено.
Этап 7.2
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 10.1
Умножим числитель на величину, обратную знаменателю.
Этап 10.2
Умножим на .
Этап 11
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 12
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Перепишем в виде .
Этап 12.2.2
Перепишем в виде .
Этап 12.2.3
Используем основные свойства логарифмов, чтобы вынести из степени.
Этап 12.2.4
Натуральный логарифм равен .
Этап 12.2.5
Умножим на .
Этап 12.2.6
Натуральный логарифм равен .
Этап 12.2.7
Вычтем из .
Этап 12.2.8
Объединим и .
Этап 12.2.9
Вынесем знак минуса перед дробью.
Этап 12.2.10
Окончательный ответ: .
Этап 13
Это локальные экстремумы .
 — локальный минимум
Этап 14