Математический анализ Примеры

Найти горизонтальную касательную y^3-27y=x^2-90
Этап 1
Set each solution of as a function of .
Этап 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем обе части уравнения.
Этап 2.2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.1.3
Заменим все вхождения на .
Этап 2.2.2.2
Перепишем в виде .
Этап 2.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.3.2
Перепишем в виде .
Этап 2.3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.4
Добавим и .
Этап 2.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 2.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.5.1.1
Вынесем множитель из .
Этап 2.5.1.2
Вынесем множитель из .
Этап 2.5.1.3
Вынесем множитель из .
Этап 2.5.2
Перепишем в виде .
Этап 2.5.3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.5.3.2
Избавимся от ненужных скобок.
Этап 2.5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.4.1
Разделим каждый член на .
Этап 2.5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.4.2.1.1
Сократим общий множитель.
Этап 2.5.4.2.1.2
Перепишем это выражение.
Этап 2.5.4.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.4.2.2.1
Сократим общий множитель.
Этап 2.5.4.2.2.2
Перепишем это выражение.
Этап 2.5.4.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.4.2.3.1
Сократим общий множитель.
Этап 2.5.4.2.3.2
Разделим на .
Этап 2.6
Заменим на .
Этап 3
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Приравняем числитель к нулю.
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Разделим на .
Этап 4
Solve the function at .
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возведение в любую положительную степень дает .
Этап 4.2.2
Вычтем из .
Этап 4.2.3
Окончательный ответ: .
Этап 5
The horizontal tangent lines are
Этап 6