Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Разделим данный интеграл на несколько интегралов.
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Этап 6.1
Пусть . Найдем .
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
Поскольку является константой относительно , производная по равна .
Этап 6.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.1.4
Умножим на .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Объединим и .
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Этап 9.1
Объединим и .
Этап 9.2
Сократим общий множитель .
Этап 9.2.1
Сократим общий множитель.
Этап 9.2.2
Перепишем это выражение.
Этап 9.3
Умножим на .
Этап 10
Поскольку производная равна , интеграл равен .
Этап 11
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Этап 12.1
Вынесем из знаменателя, возведя в степень.
Этап 12.2
Перемножим экспоненты в .
Этап 12.2.1
Применим правило степени и перемножим показатели, .
Этап 12.2.2
Умножим на .
Этап 13
По правилу степени интеграл по имеет вид .
Этап 14
Этап 14.1
Упростим.
Этап 14.2
Упростим.
Этап 14.2.1
Умножим на .
Этап 14.2.2
Умножим на .
Этап 15
Заменим все вхождения на .
Этап 16
Ответ ― первообразная функции .