Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел x/(3^x), если x стремится к infinity
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 1.3
Поскольку показатель степени стремится к , величина стремится к .
Этап 1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 6
Умножим на .