Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Внесем предел под знак логарифма.
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Натуральный логарифм равен .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.3.3.3
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.3.3.4
Точное значение : .
Этап 1.3.3.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Производная по равна .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Производная по равна .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Поскольку является константой относительно , производная по равна .
Этап 3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.6
Умножим на .
Этап 3.7
Избавимся от скобок.
Этап 3.8
Перенесем влево от .
Этап 3.9
Умножим на .
Этап 3.10
Изменим порядок множителей в .
Этап 4
Умножим числитель на величину, обратную знаменателю.
Этап 5
Умножим на .
Этап 6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 8
Найдем предел , который является константой по мере приближения к .
Этап 9
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 10
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 11
Вынесем член из-под знака предела, так как он не зависит от .
Этап 12
Этап 12.1
Найдем предел , подставив значение для .
Этап 12.2
Найдем предел , подставив значение для .
Этап 13
Этап 13.1
Сократим общий множитель .
Этап 13.1.1
Сократим общий множитель.
Этап 13.1.2
Перепишем это выражение.
Этап 13.2
Переведем в .
Этап 13.3
Умножим на .
Этап 13.4
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 13.5
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как секанс отрицательный во втором квадранте.
Этап 13.6
Точное значение : .
Этап 13.7
Умножим на .
Этап 13.8
Объединим и .
Этап 13.9
Вынесем знак минуса перед дробью.