Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (sin(x)-cos(x))/(x-pi/4), если x стремится к pi/4
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.2
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.2.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.2.4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Найдем предел , подставив значение для .
Этап 1.2.4.2
Найдем предел , подставив значение для .
Этап 1.2.5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1.1
Точное значение : .
Этап 1.2.5.1.2
Точное значение : .
Этап 1.2.5.2
Объединим числители над общим знаменателем.
Этап 1.2.5.3
Вычтем из .
Этап 1.2.5.4
Разделим на .
Этап 1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Объединим числители над общим знаменателем.
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Разделим на .
Этап 1.3.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Производная по равна .
Этап 3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Производная по равна .
Этап 3.4.3
Умножим на .
Этап 3.4.4
Умножим на .
Этап 3.5
По правилу суммы производная по имеет вид .
Этап 3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.8
Добавим и .
Этап 4
Разделим на .
Этап 5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 6
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 7
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 8
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 8.1
Найдем предел , подставив значение для .
Этап 8.2
Найдем предел , подставив значение для .
Этап 9
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Точное значение : .
Этап 9.1.2
Точное значение : .
Этап 9.2
Объединим числители над общим знаменателем.
Этап 9.3
Добавим и .
Этап 9.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.4.1
Сократим общий множитель.
Этап 9.4.2
Разделим на .
Этап 10
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: