Математический анализ Примеры

Trovare la Second Derivata f(x,y)=11(6x-3y+4)^8
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на .
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Поскольку является константой относительно , производная по равна .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Умножим на .
Этап 1.3.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.7
Добавим и .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.3.9.1
Добавим и .
Этап 1.3.9.2
Умножим на .
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Поскольку является константой относительно , производная по равна .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Умножим на .
Этап 2.3.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.7
Добавим и .
Этап 2.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.9
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.9.1
Добавим и .
Этап 2.3.9.2
Умножим на .