Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2
Продифференцируем.
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.3
Добавим и .
Этап 1.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.6
Упростим выражение.
Этап 1.2.6.1
Умножим на .
Этап 1.2.6.2
Перенесем влево от .
Этап 1.2.7
По правилу суммы производная по имеет вид .
Этап 1.2.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.9
Добавим и .
Этап 1.2.10
Поскольку является константой относительно , производная по равна .
Этап 1.2.11
Перенесем влево от .
Этап 1.2.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.13
Умножим на .
Этап 1.3
Упростим.
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Объединим термины.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Умножим на .
Этап 1.3.3.3
Умножим на .
Этап 1.3.3.4
Умножим на .
Этап 1.3.3.5
Добавим и .
Этап 1.3.3.6
Вычтем из .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Продифференцируем, используя правило константы.
Этап 2.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2
Добавим и .
Этап 3
Вторая производная по равна .