Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.3
Продифференцируем.
Этап 1.1.3.1
По правилу суммы производная по имеет вид .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.4
Добавим и .
Этап 1.1.4
Упростим.
Этап 1.1.4.1
Применим свойство дистрибутивности.
Этап 1.1.4.2
Изменим порядок членов.
Этап 1.1.4.3
Изменим порядок множителей в .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Вынесем множитель из .
Этап 2.2.1.3
Вынесем множитель из .
Этап 2.2.1.4
Вынесем множитель из .
Этап 2.2.1.5
Вынесем множитель из .
Этап 2.2.2
Разложим на множители.
Этап 2.2.2.1
Разложим на множители, используя метод группировки.
Этап 2.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2.2.2
Избавимся от ненужных скобок.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Этап 2.4.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2.4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 2.4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Добавим к обеим частям уравнения.
Этап 2.6
Приравняем к , затем решим относительно .
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Вычтем из обеих частей уравнения.
Этап 2.7
Окончательным решением являются все значения, при которых верно.
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Возведем в степень .
Этап 4.1.2.2
Вычтем из .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Возведем в степень .
Этап 4.2.2.2
Вычтем из .
Этап 4.2.2.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.2.4
Объединим и .
Этап 4.3
Перечислим все точки.
Этап 5