Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
С помощью запишем в виде .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4
Объединим и .
Этап 1.5
Объединим числители над общим знаменателем.
Этап 1.6
Упростим числитель.
Этап 1.6.1
Умножим на .
Этап 1.6.2
Вычтем из .
Этап 1.7
Объединим дроби.
Этап 1.7.1
Вынесем знак минуса перед дробью.
Этап 1.7.2
Объединим и .
Этап 1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.8
По правилу суммы производная по имеет вид .
Этап 1.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.10
Поскольку является константой относительно , производная относительно равна .
Этап 1.11
Упростим члены.
Этап 1.11.1
Добавим и .
Этап 1.11.2
Объединим и .
Этап 1.11.3
Объединим и .
Этап 1.11.4
Сократим общий множитель.
Этап 1.11.5
Перепишем это выражение.
Этап 2
Этап 2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.2
Перемножим экспоненты в .
Этап 2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2
Сократим общий множитель .
Этап 2.2.2.1
Сократим общий множитель.
Этап 2.2.2.2
Перепишем это выражение.
Этап 2.3
Упростим.
Этап 2.4
Продифференцируем, используя правило степени.
Этап 2.4.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.2
Умножим на .
Этап 2.5
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.5.1
Чтобы применить цепное правило, зададим как .
Этап 2.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5.3
Заменим все вхождения на .
Этап 2.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.7
Объединим и .
Этап 2.8
Объединим числители над общим знаменателем.
Этап 2.9
Упростим числитель.
Этап 2.9.1
Умножим на .
Этап 2.9.2
Вычтем из .
Этап 2.10
Объединим дроби.
Этап 2.10.1
Вынесем знак минуса перед дробью.
Этап 2.10.2
Объединим и .
Этап 2.10.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.10.4
Объединим и .
Этап 2.11
По правилу суммы производная по имеет вид .
Этап 2.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.13
Поскольку является константой относительно , производная относительно равна .
Этап 2.14
Объединим дроби.
Этап 2.14.1
Добавим и .
Этап 2.14.2
Умножим на .
Этап 2.14.3
Объединим и .
Этап 2.14.4
Объединим и .
Этап 2.15
Возведем в степень .
Этап 2.16
Возведем в степень .
Этап 2.17
Применим правило степени для объединения показателей.
Этап 2.18
Добавим и .
Этап 2.19
Вынесем множитель из .
Этап 2.20
Сократим общие множители.
Этап 2.20.1
Вынесем множитель из .
Этап 2.20.2
Сократим общий множитель.
Этап 2.20.3
Перепишем это выражение.
Этап 2.21
Вынесем знак минуса перед дробью.
Этап 2.22
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.23
Объединим числители над общим знаменателем.
Этап 2.24
Умножим на , сложив экспоненты.
Этап 2.24.1
Применим правило степени для объединения показателей.
Этап 2.24.2
Объединим числители над общим знаменателем.
Этап 2.24.3
Добавим и .
Этап 2.24.4
Разделим на .
Этап 2.25
Упростим .
Этап 2.26
Вычтем из .
Этап 2.27
Добавим и .
Этап 2.28
Перепишем в виде произведения.
Этап 2.29
Умножим на .
Этап 2.30
Умножим на , сложив экспоненты.
Этап 2.30.1
Умножим на .
Этап 2.30.1.1
Возведем в степень .
Этап 2.30.1.2
Применим правило степени для объединения показателей.
Этап 2.30.2
Запишем в виде дроби с общим знаменателем.
Этап 2.30.3
Объединим числители над общим знаменателем.
Этап 2.30.4
Добавим и .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
С помощью запишем в виде .
Этап 4.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Заменим все вхождения на .
Этап 4.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.1.4
Объединим и .
Этап 4.1.5
Объединим числители над общим знаменателем.
Этап 4.1.6
Упростим числитель.
Этап 4.1.6.1
Умножим на .
Этап 4.1.6.2
Вычтем из .
Этап 4.1.7
Объединим дроби.
Этап 4.1.7.1
Вынесем знак минуса перед дробью.
Этап 4.1.7.2
Объединим и .
Этап 4.1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.1.8
По правилу суммы производная по имеет вид .
Этап 4.1.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.10
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.11
Упростим члены.
Этап 4.1.11.1
Добавим и .
Этап 4.1.11.2
Объединим и .
Этап 4.1.11.3
Объединим и .
Этап 4.1.11.4
Сократим общий множитель.
Этап 4.1.11.5
Перепишем это выражение.
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим знаменатель.
Этап 9.1.1
Возведение в любую положительную степень дает .
Этап 9.1.2
Добавим и .
Этап 9.1.3
Перепишем в виде .
Этап 9.1.4
Применим правило степени и перемножим показатели, .
Этап 9.1.5
Сократим общий множитель .
Этап 9.1.5.1
Сократим общий множитель.
Этап 9.1.5.2
Перепишем это выражение.
Этап 9.1.6
Возведем в степень .
Этап 9.2
Сократим общий множитель и .
Этап 9.2.1
Вынесем множитель из .
Этап 9.2.2
Сократим общие множители.
Этап 9.2.2.1
Вынесем множитель из .
Этап 9.2.2.2
Сократим общий множитель.
Этап 9.2.2.3
Перепишем это выражение.
Этап 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Возведение в любую положительную степень дает .
Этап 11.2.2
Добавим и .
Этап 11.2.3
Перепишем в виде .
Этап 11.2.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 11.2.5
Окончательный ответ: .
Этап 12
Это локальные экстремумы .
— локальный минимум
Этап 13