Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем вторую производную.
Этап 2.1.1
Найдем первую производную.
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Найдем значение .
Этап 2.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.2.3
Умножим на .
Этап 2.1.1.3
Найдем значение .
Этап 2.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.3.2
Производная по равна .
Этап 2.1.1.4
Изменим порядок членов.
Этап 2.1.2
Найдем вторую производную.
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Найдем значение .
Этап 2.1.2.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.1.2.2.2
Перепишем в виде .
Этап 2.1.2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.2.2.5
Умножим на .
Этап 2.1.2.2.6
Умножим на .
Этап 2.1.2.2.7
Умножим на .
Этап 2.1.2.2.8
Добавим и .
Этап 2.1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.2.4
Упростим.
Этап 2.1.2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.1.2.4.2
Добавим и .
Этап 2.1.3
Вторая производная по равна .
Этап 2.2
Приравняем вторую производную к , затем найдем решение уравнения .
Этап 2.2.1
Пусть вторая производная равна .
Этап 2.2.2
Приравняем числитель к нулю.
Этап 2.2.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Нет решения
Этап 3
Этап 3.1
Зададим аргумент в большим , чтобы узнать, где определено данное выражение.
Этап 3.2
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 4
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Окончательный ответ: .
Этап 5.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 6